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Meaningful reduction 
• Mass Spectrometry Imaging (MSI) 

experiments very often need a reduction 
in dimensionality 

• Meaningless vs. meaningful reduction: 

Original message What your compression algorithm does 



Meaningful reduction 
• Mass Spectrometry Imaging (MSI) 

experiments very often need a reduction 
in dimensionality 

• Meaningless vs. meaningful reduction: 

Original message Meaningful compression 



Meaningful reduction 

• The target is to have a sparse representation 

e.g., binning… 

Four features, four meaningful components 



Redundant wavelets 

A MALDI image Wavelet [Mallat 89]: 

• Well adapted to represent 
some typical features of the 
images (scale invariance, 
local orientations) 
• Band-pass, multi-scale, 
multi-orientation 

X-lets (Redundancy): 

• Invariance to translation 
• Better orientation selectivity 
• Better compaction of energy 
• Curvelets [Candes et al 99], 
DT-CWT [Kingsbury 01], 
Steerable Pyramid [Simoncelli 

et al 92],… 

256 × 256 

subband 

256 × 256 



The sparse representation 
problem 

M > N 
range(FT) = N 
FT is a Parseval frame 

YES, INFINITE Φ𝒂 = 𝒙 

Are there any solutions in a to the equation: 

x: A spectrum as a vector of N elements 

FT: A MxN linear transformation 

Solving the sparse representation problem means looking for 
the sparsest solution: 

The l0-norm counts the number of non-zero elements in a vector 

𝒂  = min
𝑎 ∈ 𝑅𝑀

𝒂 0 𝑠. 𝑡. Φ𝒂 = 𝒙 



• 3 approaches for MSI experiments: 
– Spectrum-based 

• Each single spectrum gets compressed 
independently 

– Image-based 
• Each single MALDI image from a selected mass 

list gets compressed independently 

– Dataset-based 
• The whole dataset is represented as a 2D matrix 

with pixels as rows and selected masses as 
columns 

• This dataset is compressed as a whole 
• Advantage: Takes into account dependencies 

across all directions 

The sparse representation 
problem in MSI 



N = 2, M = 3, K = 1 

A 

aLS = ФTx 

• Example using: 
1. B0(1): L0-ball of dimension 1. All 

those vectors with just one non-
zero element 

2. S(Ф,x): set of perfect reconstruction 

S(F,x) 

B0(1) 

• Alternated orthogonal projections: local 
minimum of the distance from B0(K) to S(Ф,x) 

• Convergence can be proved  
   [Blumensath & Davies, 09] 

• The solution provides a perfect 
representation of the input as close as 
possible to the limits of the L0-ball of radius 
K. 

a1 

a2 

a3 

Iterative hard thresholding 



1. Set a level of sparseness K 
  This is equivalent to setting a threshold ϴ 
 

2. Get the minimum energy solution a(0) = aLS = ФTx 
 
3.    Repeat until convergence: 
 

1. b(k+1) = Project a(k) onto B0(K): 
  
 Set to zero all elements with intensity lower than ϴ 

 

2. Project b(k+1) onto S(Ф,x): 
 

 a(k+1) = b(k+1) + ФT(x - Ф b(k+1)) 

Iterative Hard Thresholding 
algorithm 



Multiple minima: 
Difficult global 
optimization 

Intuitive justification of dynamic thresholding: 

COST 
FUNCTION 

Good candidate for the global 
optimum 

Find favourable optima searching from good candidates at higher qs 

Using dynamic thresholding 

ϴ 



Compressing single spectra 

• β = 0.9, Dual-Tree Complex Wavelets, 8 levels, x2 
redundancy factor 

 

• Basepeak spectrum from a mouse brain tissue  
– Basepeak spectrum chosen for illustration because it 

typically shows more number of peaks and is typically 
more noisy than the ROI spectrum 

 

• Results obtained using Matlab™ R2016a on an Intel® 
Core™ i5-3230 @ 2.60 GHz 



Compressing single spectra 

Original (179200 
data points) 

From top 230 wavelet  
coeffs  
(99.87% reduction)  



Compressing single spectra 

Original (zoomed in  
to 700-800 Da) 

From top 230 wavelet  
coeffs  
(99.87% reduction)  



Compressing single spectra 

Original (179200 
data points) 

From top 1432 wavelet  
coeffs  
(99.20% reduction)  



Compressing single spectra 
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Compressing single spectra 

Original (179200 
data points) 

From top 2214 wavelet  
coeffs  
(98.76% reduction)  



Compressing single spectra 

Original (zoomed in  
to 700-800 Da) 

From top 2214 wavelet  
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(98.76% reduction)  



Compressing single spectra 

Original (179200 
data points) 

From top 3672 wavelet  
coeffs  
(97.95% reduction)  



Compressing single spectra 

Original (zoomed in  
to 700-800 Da) 

From top 3672 wavelet  
coeffs  
(97.95% reduction)  



Compressing all spectra in a 
dataset 

Dataset 
(ROI) 

Number 
of pixels 

Number 
of data 
points 
per pixel 

Size in 
disk 
(ASCII) 

Avg. 
num of  
reduced 
data 
points 

Reduce
d size in 
disk 
(ASCII) 

Avg. % of 
reduction 

Avg. 
accuracy 
of the 
represen
tation 
(MSE) 

Mouse 
brain 1 

10397 292,864 35.4 GB 13,718 2.49 GB 92.97% 2.8·10-2 

Mouse 
brain 2 

11976 179,200 24.95 GB 7,780 1.62 GB 95.66% 2.4·10-2 

Mouse 
brain 3 

8976 154,300 16.10 GB 10,452 1.64 GB 93.23% 1.99·10-2 

Averaged 10450 208,788 25.48 GB 10,650 1.91 GB 93.95 % 2.4·10-2 



Compressing single spectra 

• Further compression with traditional algorithms is 
possible 

 

• Alternative convex relaxation algorithm provides a total 
average of 89.54% 

 

• Execution time averaged approx. 9 seconds per spectrum 
on a non-optimised script in MatlabTM   
– Win64 Intel® Core™ i5-3230M CPU @ 2.60 GHz 

– Most of the time spent on Analysis/Synthesis operations 

 

• The average compression done image-wise is lower, 
averaging roughly 75% for images showing “some” 
structure 



Application to other problems 

• Application to other problems need to 
reformulate the problem to look for the 
sparsest approximation 

 

• Many applications might also need to redefine 
the concept of perfect reconstruction to that 
of compatibility to the observation 



Conclusions 

• We have presented a method to find sparse 
(compressible) representations of imaging datasets using 
redundant wavelet transformations 

• The large dictionary forming a redundant wavelet basis 
provides meaningful representation of features in 
relatively few number of coefficients 

• We have applied the Iterative Hard Thresholding 
algorithm, shown previously to be superior to other 
alternatives to find sparse representations [Blumensath & 
Davies 08, Mancera & Portilla 08] 

• We have used a technique inspired by simulated 
annealing to avoid local minima of the non-convex 
quasi-norm used in the cost function and remove the 
need to estimate the level of sparsity required 

• Results show high compression ratios, with increasingly 
better approximations as more coefficients are used 



Future work 

• Need to speed up the iterations 
– Approaches to reduce the number of iterations 

needed 
– Code optimisation 

• Adaptive threshold strategy 
– Deal differently with different mass range 

• Potential applications include: 
– Spectra smoothing 
– Peak detection 
– Image denoising 
– Restoration after vector quantization 
– Improving image resolution 
– Mutivariate analysis 
– … 
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