Dimensionality reduction of MALDI Imaging datasets using non-linear redundant wavelet transform-based representations

Luis Mancera¹, Lyna Sellami², Jamie Cunliffe²,

Luis González¹, Omar Belgacem²

¹Clover Bioanalytical Software, Spain ²Shimadzu, UK

For Research Use Only. Not for use in diagnostic procedures. This presentation may contain references to products that are not available in your country. All rights reserved. Information subject to change without notice.

CLOVER BioSoft

Content

- The problem of meaningful reduction
- The sparse representation problem
- Iterative hard thresholding algorithm
- Avoiding local minima
- Results on data compression
- Conclusions
- Future Work

Meaningful reduction

- Mass Spectrometry Imaging (MSI) experiments very often need a reduction in dimensionality
- Meaningless vs. meaningful reduction:

Meaningful reduction

- Mass Spectrometry Imaging (MSI) experiments very often need a reduction in dimensionality
- Meaningless vs. meaningful reduction:

Meaningful reduction

The target is to have a sparse representation

Redundant wavelets

A MALDI image

Wavelet [Mallat 89]:

- Well adapted to represent some typical features of the images (scale invariance, local orientations)
- Band-pass, multi-scale, multi-orientation

256 × 256

subband

X-lets (Redundancy):

- Invariance to translation
- Better orientation selectivity
- Better compaction of energy
- Curvelets [Candes *et al* 99], DT-CWT [Kingsbury 01], Steerable Pyramid [Simoncelli

ota

The sparse representation problem

x: A spectrum as a vector of N elements

 Φ^{T} : A MxN linear transformation M > N

 $range(\mathbf{\Phi}^{\mathrm{T}}) = \mathbf{N}$ $\mathbf{\Phi}^{\mathrm{T}}$ is a Parseval frame

Are there any solutions in **a** to the equation:

 $\Phi a = x$ **YES, INFINITE**

Solving the **sparse representation problem** means looking for the sparsest solution:

$$\widehat{a} = \min_{a \in R^M} ||a||_0 \text{ s. } t. \Phi a = x$$

The IO-norm counts the number of non-zero elements in a vector

The sparse representation problem in MSI

- 3 approaches for MSI experiments:
 - Spectrum-based
 - Each single spectrum gets compressed independently
 - Image-based
 - Each single MALDI image from a selected mass list gets compressed independently

Dataset-based

- The whole dataset is represented as a 2D matrix with pixels as rows and selected masses as columns
- This dataset is compressed as a whole
- Advantage: Takes into account dependencies across all directions

Iterative hard thresholding

- Example using:
 - B₀(1): L0-ball of dimension 1. All those vectors with just one nonzero element
 - 2. $S(\Phi, \mathbf{x})$: set of perfect reconstruction
- Alternated orthogonal projections: local minimum of the distance from $B_0(K)$ to $S(\Phi, \mathbf{x})$
 - Convergence can be proved [Blumensath & Davies, 09]

• The solution provides a perfect representation of the input as close as possible to the limits of the *L*O-ball of radius K.

Iterative Hard Thresholding algorithm

- Set a level of sparseness K
 This is equivalent to setting a threshold Θ
- 2. Get the minimum energy solution $\mathbf{a}^{(0)} = \mathbf{a}_{LS} = \Phi^T \mathbf{x}$
- 3. Repeat until convergence:
 - **1.** $\mathbf{b}^{(k+1)} = \text{Project } \mathbf{a}^{(k)} \text{ onto } B_0(K)$:

Set to zero all elements with intensity lower than $\boldsymbol{\Theta}$

2. Project $\mathbf{b}^{(k+1)}$ onto $S(\mathbf{\Phi}, \mathbf{x})$:

 $a^{(k+1)} = b^{(k+1)} + \Phi^{T}(x - \Phi b^{(k+1)})$

Using dynamic thresholding

Intuitive justification of dynamic thresholding:

- β = 0.9, Dual-Tree Complex Wavelets, 8 levels, x2 redundancy factor
- Basepeak spectrum from a mouse brain tissue
 - Basepeak spectrum chosen for illustration because it typically shows more number of peaks and is typically more noisy than the ROI spectrum
- Results obtained using Matlab[™] R2016a on an Intel[®] Core[™] i5-3230 @ 2.60 GHz

Compressing all spectra in a dataset

Dataset (ROI)	Number of pixels	Number of data points per pixel	Size in disk (ASCII)	Avg. num of reduced data points	Reduce d size in disk (ASCII)	Avg. % of reduction	Avg. accuracy of the represen tation (MSE)
Mouse brain 1	10397	292,864	35.4 GB	13,718	2.49 GB	92.97%	2.8·10 ⁻²
Mouse brain 2	11976	179,200	24.95 GB	7,780	1.62 GB	95.66%	2.4·10 ⁻²
Mouse brain 3	8976	154,300	16.10 GB	10,452	1.64 GB	93.23%	1.99·10 ⁻²
Averaged	10450	208,788	25.48 GB	10,650	1.91 GB	93.95 %	2.4 ·10 ⁻²

- Further compression with traditional algorithms is possible
- Alternative convex relaxation algorithm provides a total average of 89.54%
- Execution time averaged approx. 9 seconds per spectrum on a non-optimised script in Matlab[™]
 - Win64 Intel[®] Core[™] i5-3230M CPU @ 2.60 GHz
 - Most of the time spent on Analysis/Synthesis operations
- The average compression done image-wise is lower, averaging roughly 75% for images showing "some" structure

Application to other problems

- Application to other problems need to reformulate the problem to look for the sparsest approximation
- Many applications might also need to redefine the concept of *perfect reconstruction* to that of *compatibility to the observation*

Conclusions

- We have presented a method to find sparse (compressible) representations of imaging datasets using redundant wavelet transformations
- The large dictionary forming a redundant wavelet basis provides meaningful representation of features in relatively few number of coefficients
- We have applied the **Iterative Hard Thresholding algorithm**, shown previously to be superior to other alternatives to find sparse representations [Blumensath & Davies 08, Mancera & Portilla 08]
- We have used a technique inspired by simulated annealing to **avoid local minima** of the non-convex quasi-norm used in the cost function and remove the need to estimate the level of sparsity required
- Results show high compression ratios, with increasingly better approximations as more coefficients are used

Future work

- Need to speed up the iterations
 - Approaches to reduce the number of iterations needed
 - Code optimisation
- Adaptive threshold strategy
 - Deal differently with different mass range
- Potential applications include:
 - Spectra smoothing
 - Peak detection
 - Image denoising
 - Restoration after vector quantization
 - Improving image resolution
 - Mutivariate analysis

— ...

Thanks for your attention!

CLOVER BioSoft

Acknowledgments

CLOVER BioSoft[®]

- Dr. Luis González,
- Dr. Emmanuel Wey,
- Dr. Gerald Stubiger

Clover Bioanalytical Software, S.L. Av. de la Innovación, 1 18016 Granada, Spain

- Jamie Cunliffe
- Dr. Lyna Sellami
- Dr. Omar Belgacem
- Dr. Matt Oppenshaw
- Roberto Raso

Kratos Analytical Ltd Trafford Wharf Road M17 1GP, Manchester UK