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Meaningful reduction

* Mass Spectrometry Imaging (MSI)
experiments very often need a reduction
in dimensionality

* Meaningless vs. meaningful reduction:
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Meaningful reduction

* The target is to have a sparse represe
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e.g., binning...

Four features, four meaningful components



Redundant wavelets

A MALDI image

Wavelet [mallat 89]:

e Well adapted to represent
some typical features of the
images (scale invariance,
local orientations)

e Band-pass, multi-scale,
multi-orientation

¢ [nvariance to translation
e Better orientation selecti
e Better compaction of ener\}’
e Curvelets [Candes et al 99], }
DT-CWT [Kingsbury 01],
Steerable Pyramid s




The sparse representation
problem

X: A spectrum as a vector of N elements

®": A MxN linear transformation M>N
range(®T) =N
@' is a Parseval frame

Are there any solutions in a to the equation:

da =x s YES, INFINITE

Solving the sparse representation problem means looking for
the sparsest solution:

Y
The 10-norm counts the number of non-zero elements in a vector




The sparse representation
problem in MSI

e 3 approaches for MSI experiments:

— Spectrum-based

* Each single spectrum gets compressed
independently

— Image-based
* Each single MALDI image from a selected mass
list gets compressed independently
— Dataset-based

* The whole dataset is represented as a 2D matrix
with pixels as rows and selected masses as
columns

* This dataset is compressed as a whole

* Advantage: Takes into account dependencies
across all directions




Iterative hard thresholding

e Example using:

1. By(1): LO-ball of dimension 1. All
those vectors with just one non-
zero element

2. S(®d,x): set of perfect reconstruction

e Alternated orthogonal projections: local
minimum of the distance from B(K) to S(®,x)
e Convergence can be proved
[Blumensath & Davies, 09]

e The solution provides a  perfect
representation of the input as close as
possible to the limits of the LO-ball of radius
K.




Iterative Hard Thresholding

algorithm
1. Set a level of sparseness K
This is equivalent to setting a threshold ©
2. Get the minimum energy solution al® = a . = ®"x
3. Repeat until convergence:

1. b**1=PpProject al¥ onto B,(K):
Set to zero all elements with intensity lower than ©
2. Project b1 onto S(®,x):

g(kt1) = pl(k+1) + CDT(X -} b(k+1))



Using dynamic thresholding

Intuitive justification of dynamic thresholding:
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Compressing single spectra

* B=0.9, Dual-Tree Complex Wavelets, 8 levels, x2
redundancy factor

e Basepeak spectrum from a mouse brain tissue

— Basepeak spectrum chosen for illustration because it
typically shows more number of peaks and is typically
more noisy than the ROl spectrum

* Results obtained using Matlab™ R2016a on an Intel®
Core™ 15-3230 @ 2.60 GHz



Compressing single spectra

Original (179200
data points)

From top 230 wavelet |
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(99.87% reduction)




Compressing single spectra

Original (zoomed in
to 700-800 Da)
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Compressing single spectra

Original (179200
data points)

From top 1432 wavelet -
coeffs
(99.20% reduction)




Compressing single spectra
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Compressing single spectra

Original (179200
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Compressing single spectra

Original (zoomed in
to 700-800 Da)
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Compressing single spectra

Original (179200
data points)

From top 3672 wavelet |
coeffs
(97.95% reduction)




Compressing single spectra
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Compressing all spectrain a
dataset

Dataset
(ROI)

Mouse
brain 1

Mouse
brain 2

Mouse
brain 3

Averaged

Number
of pixels

10397

11976

8976

10450

Number
of data
points
per pixel

292,864

179,200

154,300

208,788

Size in
disk
(ASCII)

35.4 GB

24.95 GB

16.10 GB

25.48 GB

Reduce
d sizein
disk
(ASCII)

Avg.
num of
reduced
data
points

Avg. % of
reduction

13,718 2.49GB  92.97%
7,780 1.62GB  95.66%
10,452 1.64GB  93.23%
10,650 191GB 93.95%

Avg.
accuracy
of the
represen
tation
(MSE)

2.8:10?

2.4:102

1.99-1072

2.4-10



Compressing single spectra

Further compression with traditional algorithms is
possible

Alternative convex relaxation algorithm provides a total
average of 89.54%

Execution time averaged approx. 9 seconds per spectrum
on a non-optimised script in Matlab™

— Win64 Intel® Core™ i5-3230M CPU @ 2.60 GHz

— Most of the time spent on Analysis/Synthesis operations

The average compression done image-wise is lower,
averaging roughly 75% for images showing “some”
structure



Application to other problems

* Application to other problems need to
reformulate the problem to look for the
sparsest approximation

* Many applications might also need to redefine
the concept of perfect reconstruction to that
of compatibility to the observation



Conclusions

* We have presented a method to find sparse
(compressible) representations of imaging datasets usin
redundant wavelet transformations

* The large dictionary forming a redundant wavelet basis
provides meaningful representation of features in
relatively few number of coefficients

 We have applied the Iterative Hard Thresholding
algorithm, shown previously to be superior to other
alternatives to find sparse representations [Blumensath &
Davies 08, Mancera & Portilla 08]

* We have used a technique inspired by simulated
annealing to avoid local minima of the non-convex
qguasi-norm used in the cost function and remove the
need to estimate the level of sparsity required

e Results show high compression ratios, with increasingly
better approximations as more coefficients are used



Future work

* Need to speed up the iterations

— Approaches to reduce the number of iterations
needed

— Code optimisation
* Adaptive threshold strategy
— Deal differently with different mass range

* Potential applications include:
— Spectra smoothing
— Peak detection
— Image denoising
— Restoration after vector quantization
— Improving image resolution
— Mutivariate analysis
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