Use of MALDI-TOF mass spectrometry and machine learning to detect the adulteration of extra virgin olive oils

Simona Salivo1; Tom K. Abban2; Ismael Duque3; Luis Mancera4; Matthew E. Openshaw5

1Shimadzu, Manchester, UK; 2Clover Bioanalytical Software, Granada, Spain

1. Introduction

Extra virgin olive oil (EVOO) is known for its nutraceutical properties, which associate it with several health benefits and a high economic value. For these reasons, EVOO is often a target of adulteration with cheaper, lower-grade vegetable oils, typically, sunflower, corn and soybean. Within the quality control process of EVOO products, it is fundamental to develop rapid, simple and robust analytical methods to detect any fraud. Here, we present a simple approach based on the profiling of triacylglycerols (TAGs) using MALDI-TOF mass spectrometry and soybean. Within the quality control process of EVOO products, it is fundamental to develop rapid, simple and robust analytical methods to detect any fraud. Here, we present a simple approach based on the profiling of triacylglycerols (TAGs) using MALDI-TOF mass spectrometry and soybean.

2. Methods and Materials

EVOO and sunflower oils were purchased from local stores. Sample preparation involved dissolution of oil aliquots in chloroform. To simulate the adulteration, mixtures of EVOOs containing 5%, 10% and 20% sunflower oil were prepared. Tricin was used as an internal standard for mass alignment and the semi-quantitative analyses. MALDI-TOF (Matrix-free) analyses were conducted on a MALDI-TOF benchtop linear MALDI-TOF mass spectrometer (Shimadzu, Manchester, UK; Figure 1), by spotting the oil sample solutions directly onto the MALDI target which was previously pre-coated with NaTFA. Data were acquired in quadruplicate for each sample and processed using Clover MS software (Clover Bioanalytical Software, Granada, Spain) for peak area calculation and classification with neural networks.

3. Results and Discussion

3.1. MALDI analyses

Figure 2a shows a comparison between the TAG profiles of an EVOO and a Sunflower oil. It can be seen how, in EVOO (red trace), naturally rich in palmitic (P) and oleic (O) acids, the TAGs at m/z 901 and 907, i.e. most likely OPO and OOO, are mainly predominant. In Sunflower oil (blue trace), highly rich in linoleic acid (L), the most representative TAGs are those at m/z 901, 903 and 905, i.e. most likely OLL, OLL and OLO, respectively. In the oil mixture scenarios (Figure 2b), the alteration of the natural TAG ratios in EVOO, e.g. m/z 877/907, 903/907 and 905/907, can be observed. Interestingly, the TAG at m/z 901 (LLL), characteristic of Sunflower oil but not normally present in EVOO, is revealed in the EVOO/Sunflower mixtures even at the smallest adulteration level.

3.2. Semi-quantitative analyses

Figure 3 shows the plots of the ratios of EVOO’s TAG markers and the TAG at m/z 907 (the most abundant and representative in EVOO), versus the different levels of adulterant oil (from 0%, i.e. pure EVOO, to 20% Sunflower oil). All TAGs were normalized against the internal standard using the area of the peaks from quadruplicate analyses. A good linearity has been achieved along with good coefficients of determination (R²).

3.3. Neural Network Training and Classification

Artificial Neural Networks (ANNs) are one of the well-known cutting edge technologies used for classification problems given the huge amount of data available nowadays. They are able to learn specific features from a given dataset. On the other hand, logistic regression models have been typically used for binary classification on clearly separable datasets. We show that the use of ANNs with a logistic regression model seems to be a fast and efficient combination to detect different types of oil samples including the adulterated ones. We have created a three layers neural network (Figure 4) able to classify between the EVOO, the Adulterated EVOO or sunflower oil categories. Prior to the classification all spectra were aligned and normalized by the 903 De Mass. Clover MS software has been used for all the processing described in this section.

4. Conclusions

The combination of MALDI-TOF MS and the use of a cutting edge machine learning technique has been proven to be suitable for the detection of adulterated EVOO. The efficiency and simplicity of the methodology proposed is the key point of this research. The promising results achieved, and the expansion of the dataset and categories to be detected will determine the future viability of the system and its introduction into the olive oil industry.

References

The products and applications in this presentation are intended for Research Use Only (RUO) and not for use in diagnostic procedures. Not available in China.